AUICKSTART

Over 35 Years Of Technology Training

Document Generated: 02/18/2026
Learning Style: Virtual Classroom
Technology: Linux Foundation
Difficulty: Intermediate

Course Duration: 4 Days

Developing Linux Device Drivers (LFD430)

Page 1/9

https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

About this course:
Learn how to develop device drivers for Linux systems. This course will teach you
about the different types of Linux device drivers as well as the appropriate APIs and

methods through which devices interface with the kernel.

This course will teach you how to develop device drivers for Linux systems,
grounded with a basic familiarity and understanding of the underlying Linux kernel.

The average salary of an Embedded Linux Developer is $107,500 per year.
Course Objective:

You'll learn:

The different kinds of device drivers used in Linux

The appropriate APIs through which devices (both hardware and software)
interface with the kernel.

Necessary modules and techniques for developing and debugging Linux
drivers

And more.

The information in this course will work with any major Linux distribution.

Audience:

¢ App Developers
e C/C++,C# developers
¢ Linyx Developers

Prerequisite:

¢ Knowledge of basic kernel interfaces and methods such as how to write,
compile, load and unload modules, use synchronization primitives, and the
basics of memory allocation and management, such as is provided
by LFD420 Linux Kernel Internals and Development. Pre-class
preparation material will be provided before class.

Course Outline:
Introduction

¢ Objectives

e Who You Are

e The Linux Foundation

¢ Linux Foundation Training
e Linux Distributions

¢ Platforms

e Preparing Your System

Page 2/9 https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

Using and Downloading a Virtual Machine
Things change in Linux

Documentation and Links

Course Registration

Preliminaries

Procedures

Kernel Versions

Kernel Sources and Use of git
Rolling Your Own Kernel
Hardware

Staging Tree

How to Work in OSS Projects **

¢ Overview on How to Contribute Properly

e Stay Close to Mainline for Security and Quality

¢ Study and Understand the Project DNA

e Figure Out What Itch You Want to Scratch

¢ |dentify Maintainers and Their Work Flows and Methods
e Get Early Input and Work in the Open

e Contribute Incremental Bits, Not Large Code Dumps

e Leave Your Ego at the Door: Don’t Be Thin-Skinned

¢ Be Patient, Develop Long Term Relationships, Be Helpful

Device Drivers

e Types of Devices

e Mechanism vs. Policy

¢ Avoiding Binary Blobs

* Power Management

e How Applications Use Device Drivers

e Walking Through a System Call Accessing a Device
e Error Numbers

e printk()

¢ devres: Managed Device Resources

e Labs

Modules and Device Drivers
e The module_driver() Macros
¢ Modules and Hot Plug
e Labs
Memory Management and Allocation
¢ Virtual and Physical Memory

* Memory Zones
e Page Tables

Page 3/9 https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

kmalloc()
__get_free_pages()
vmalloc()

Slabs and Cache Allocations
Labs

Character Devices

Device Nodes

Major and Minor Numbers
Reserving Major/Minor Numbers
Accessing the Device Node
Registering the Device

udev

dev_printk() and Associates
file_operations Structure

Driver Entry Points

The file and inode Structures
Miscellaneous Character Drivers
Labs

Kernel Features

Components of the Kernel

User-Space vs. Kernel-Space

What are System Calls?

Available System Calls

Scheduling Algorithms and Task Structures
Process Context

Labs

Transferring Between User and Kernel Space

Transferring Between Spaces

put(get) user() and copy_to(from)_user()

Direct Transfer: Kernel I/O and Memory Mapping
Kernel 1/0

Mapping User Pages

Memory Mapping

User-Space Functions for mmap()

Driver Entry Point for mmap()

Accessing Files from the Kernel

Labs

Interrupts and Exceptions

Page 4/9

e What are Interrupts and Exceptions?
e Exceptions

¢ Asynchronous Interrupts

e MSI

https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

Enabling/Disabling Interrupts

What You Cannot Do at Interrupt Time
IRQ Data Structures

Installing an Interrupt Handler

Labs

Timing Measurements

Kinds of Timing Measurements
Jiffies

Getting the Current Time
Clock Sources

Real Time Clock
Programmable Interval Timer
Time Stamp Counter

HPET

Going Tickless

Labs

Kernel Timers

ioctls

Inserting Delays

What are Kernel Timers?

Low Resolution Timer Functions

Low Resolution Timer Implementation
High Resolution Timers

Using High Resolution Timers

Labs

What are ioctls?

Driver Entry point for ioctls
Defining ioctls

Labs

Unified Device Model and sysfs

Unified Device Model
Basic Structures

Real Devices

sysfs

kset and kobject examples
Labs

Firmware

Page 5/9

What is Firmware?
Loading Firmware
Labs

https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

Sleeping and Wait Queues

¢ What are Wait Queues?

e Going to Sleep and Waking Up
¢ Going to Sleep Details

¢ Exclusive Sleeping

¢ Waking Up Details

e Polling

e Labs

Interrupt Handling: Deferrable Functions and User Drivers

e Top and Bottom Halves

e Softirgs

e Tasklets

e Work Queues

¢ New Work Queue API

e Creating Kernel Threads

e Threaded Interrupt Handlers

e Interrupt Handling in User-Space
e Labs

Hardware 1/O

e Buses and Ports

e Memory Barriers

¢ Registering I/O Ports

¢ Reading and Writing Data from 1/0O Registers
¢ Allocating and Mapping 1/O Memory

e Accessing I/0O Memory

e Access by User — ioperm(), iopl(), /dev/port

e Labs

PCI

e What is PCI?

¢ PCI Device Drivers

e Locating PCI Devices

e Accessing Configuration Space

e Accessing I/0O and Memory Spaces
e PCIl Express

e Labs

Platform Drivers**

What are Platform Drivers?
Main Data Structures
Registering Platform Devices
An Example

Hardcoded Platform Data

Page 6/9 https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

¢ The New Way: Device Trees
e Labs

Direct Memory Access (DMA)

e What is DMA?

e DMA Directly to User

e DMA and Interrupts

¢ DMA Memory Constraints
e DMA Masks

e DMA API

e DMA Pools

e Scatter/Gather Mappings
e Labs

Network Drivers |: Basics

¢ Network Layers and Data Encapsulation
Datalink Layer

Network Device Drivers
Loading/Unloading

e Opening and Closing

Labs

Network Drivers Il: Data Structures

¢ net_device Structure

¢ net_device_ops Structure

e sk_buff Structure

e Socket Buffer Functions

¢ netdev_printk() and Associates
e Labs

Network Drivers Ill: Transmission and Reception

e Transmitting Data and Timeouts
¢ Receiving Data

e Statistics

e Labs

Network Drivers IV: Selected Topics

¢ Multicasting **

e Changes in Link State

e joctls

e NAPI and Interrupt Mitigation
¢ NAPI Details

e TSO and TOE

¢ MIl and ethtool **

Page 7/9 https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

USB Drivers

What is USB?

USB Topology
Terminology

Endpoints

Descriptors

USB Device Classes
USB Support in Linux
Registering USB Device Drivers
Moving Data

Example of a USB Driver
Labs

Management

Power Management
ACPI and APM
System Power States
Callback Functions
Labs

Block Drivers

What are Block Drivers?
Buffering

Registering a Block Driver
gendisk Structure
Request Handling

Labs

Closing and Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints.

Evaluation Survey

Credly Badge:

Page 8/9

Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With

https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

badges issued and validated by Credly, you can:

¢ Let anyone verify your completion and
achievement by clicking on the badge

¢ Display your hard work and validate your
expertise

¢ Display each badge's details about specific
skills you developed.

Q@UICKSTART

Course Name:

Developing Linux Device

APPLICATION
DEVELOPMENT

Drivers (LFD430)

Badges are issued by QuickStart and verified through
Credly.

Find Out More or See List Of Badges

Page 9/9 https://sales.quickstart.com/developing-linux-device-drivers-1fd430.html

https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://sales.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

